CTP431- Music and Audio Computing Audio Signal Processing (Part #2)

Graduate School of Culture Technology KAIST Juhan Nam

Types of Audio Signal Processing

- Filter/EQ
- Compressor
- Delay-based Effects
 - Delay, reverberation
- Spatial Effect
 HRTF
- Playback Rate Conversion
 - Resampling

Filters

- Adjust the level of a certain frequency band
 - Lowpass
 - Highpass
 - Bandpass
 - Notch
 - Resonant Filter
 - Equalizer
- Parameters
 - Cut-off/Center Frequency
 - Q: sharpness/resonance

Low-pass Filter

Transfer Function

$$H(z) = (\frac{1 - \cos\Theta}{2}) \frac{1 + 2z^{-1} + 1z^{-2}}{(1 + \alpha) - 2\cos\Theta z^{-1} + (1 - \alpha)z^{-2}} \qquad \alpha = \frac{\sin\Theta}{2Q} \qquad \Theta = 2\pi f_c / f_s$$

– fc : cut-off frequency, Q: resonance

High-pass Filter

$$H(z) = (\frac{1 + \cos\Theta}{2}) \frac{1 - 2z^{-1} + 1z^{-2}}{(1 + \alpha) - 2\cos\Theta z^{-1} + (1 - \alpha)z^{-2}} \qquad \alpha = \frac{\sin\Theta}{2Q} \qquad \Theta = 2\pi f_c / f_s$$

Band-pass filter

$$H(z) = (\frac{\sin\Theta}{2}) \frac{1 - z^{-2}}{(1 + \alpha) - 2\cos\Theta z^{-1} + (1 - \alpha)z^{-2}} \qquad \alpha = \frac{\sin\Theta}{2Q} \qquad \Theta = 2\pi f_c / f_s$$

Notch filter

$$H(z) = \frac{1 - 2\cos\Theta z^{-1} + z^{-2}}{(1 + \alpha) - 2\cos\Theta z^{-1} + (1 - \alpha)z^{-2}} \qquad \alpha = \frac{\sin\Theta}{2Q} \qquad \Theta = 2\pi f_c / f_s$$

Equalizer

$$H(z) = \frac{(1 + \alpha \cdot A) - 2\cos\Theta z^{-1} + (1 + \alpha \cdot A)z^{-2}}{(1 + \alpha / A) - 2\cos\Theta z^{-1} + (1 - \alpha / A)z^{-2}} \qquad \alpha = \frac{\sin\Theta}{2Q} \qquad \Theta = 2\pi f_c / f_s$$

References

- Cookbook formulae for audio EQs based on biquad filter (R. Bristow-Johnson)
 - <u>http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt</u>

Compressor

- Audio effect unit for automatic gain control
 - Boost the level for soft signals and suppress it for loud signals
 - Typically used as a front-end processor in sound recording

Signal Processing Pipeline

Envelope Detector

Detecting the level of signal

- Different sensitivity for increasing (attack) and decreasing (release) levels
 - During attack:

$$y(n) = y(n-1) + (1 - e^{-1/(attack_time^*fs)})(|x(n)| - y(n-1))$$

– During release:

$$y(n) = y(n-1) + (1 - e^{-\frac{1}{(release_time^*fs)}})(|x(n)| - y(n-1))$$

Gain Curve

Parameters

Output (dB)

- Threshold: level
- Attack/Release: sensitivity
- Ratio: amount of compression

Threshold

Gain Curve

No compression

Ratio

1:2

1:4

1:10

Input (dB)

- Knee: smoothing

Delay-based Audio Effects

- Types of delay-based audio effect
 - Delay
 - Chorus
 - Flanger
 - Reverberation

Delay

- Delay effect
 - Generate repetitive loop delay
 - Feedback coefficient controls the amount of delayed input
 - Can be extended to stereo signals such that the delay output is "ping-ponged" between the left and right channels
 - The delay length is often synchronized with music tempo
 - The delayline is implemented as a "circular buffer"

Chorus

- Chorus effect
 - Gives the illusion of multiple voices playing in unison
 - By summing detuned copies of the input
 - Low frequency oscillators are used to modulate the position of output tops \rightarrow This causes the pitch of the input (resampling!)

Flanger

- Flanger effect
 - Originally generated by summing the output of two un-locked tape machines while varying their sync (used to be called "reel-flanging")
 - Emulated by summing one static tap and variable tap in the delay line
 - Feed-forward combine filter where harmonic notches vary over frequency.
 - LFO is often synchronized with music tempo

Reverberation

- Natural acoustic phenomenon that occurs when sound sources are played in a room
 - Thousands of echoes are generated as sound sources are reflected against wall, ceiling and floors
 - Reflected sounds are delayed, attenuated and low-pass filtered: high-frequency component decay faster
 - The patterns of myriads of echoes are determined by the volume and geometry of room and materials on the surfaces

Reverberation

- Room reverberation is characterized by its impulse response (IR)
 - E.g. when a balloon pop is used as a sound source
- The room IR is composed of three parts
 - Direct path
 - Early reflections
 - Late-field reverberation: high echo density
- RT60
 - The time that it takes the reverberation to decay by 60 dB from its peak amplitude

Artificial Reverberation

- Mechanical reverb
 - Use metal plate and spring
 - Plate reverb: <u>https://www.youtube.com/watch?v=XJ5OFpvX5Vs</u>
- Delayline-based reverb
 - Early reflections: feed-forward delayline
 - Late-field reverb: allpass/comb filter, feedback delay networks (FDN)
 - "Programmable" reverberation
- Convolution reverb
 - Measure the impulse response of a room
 - Do convolution input with the measured IR

Delay-based Reverb

AllPass filter / Comb filter (when one tap is absent)

Convolution Reverb

Measuring impulse responses

- If the input is a unit impulse, SNR is low
- Instead, we use specially designed input signals
 - Golay code, allpass chirp or sine sweep: their magnitude responses are all flat but the signals are spread over time
- The impulse response is obtained using its inverse signal or inverse discrete Fourier transform

21

Convolution Reverb

22

Spatial Hearing

- A sound source arrives in the ears of a listener with differences in time and level
 - The differences are the main cues to identify where the source is.
 - We call them **ITD** (Inter-aural Time Difference) and **IID** (Inter-aural Intensity Difference)
 - ITD and IID are a function of the arrival angle.

Head-Related Transfer Function (HRTF)

- A filter measured as the frequency response that characterizes how a sound source arrives in the outer end of ear canal
 - Determined by the refection on head, pinnae or other body parts
 - Function of azimuth (horizontal angle) and elevation (vertical angle)

Measured Head-Related Impulse Responses

25

Microphone Specifications

Sensitivity: 10mV/Pa ± 2.5 dB Maximum SPL: 130 dB (THD 1%), 140 dB (THD 3%)

Magnitude response of the HRIRs

Binaural Synthesis

- Rendering the spatial effect using the measured HRIRs as FIR filters
 - HRIRs are typically several hundreds sample long
 - Convolution or modeling by IIR filters
- Individualization of HRTF is a issue

Playback Rate Conversion

- Adjusting playback rate given the sampling rate
 - Analogy to sliding tapes on the magnetic header in a variable speed
 - Speeding down: "monster-like"
 - Speeding up: "chipmunk-like"

Playback Rate Conversion

Change pitch, length and timbre

[The DaFX book]

Resampling

- Playback rate conversion is performed by resampling
 - Interpolation on discrete samples
 - Convolution with interpolation filters
 - Need to avoid aliasing for down sampling
 - Narrowing the bandwidth of the lowpass filter
- Two Types
 - Down-sampling: pitch goes up and time shrinks
 - Up-sampling: pitch goes down and time expands

Interpolation Filters

31